

Poly Innovation in Tackling Plastic Pollution

Dr Matthew Thornton Chief Development Officer Plastribution, UK - 24 February 2022

Poly .: materia

Biotransformation[®]

 (γ)

"The world's first biodegradation technology capable of delivering full biological decomposition on polyolefin packaging materials in the open environment"

POLYMATERIA AT A GLANCE

- Advanced Tech London-scale up developing new standard in biodegradable and compostable plastics
- Emerged from the Imperial College London's Innovation Hub
- Backed by purpose-driven investment firm Planet First Partners ¹ (PFP)
- Launched the world's first biodegradation technology capable of delivering full microbial conversion on polyolefins in the open environment in 2018
- State of the art R&D facilities, London (UK) and highly specialised manufacturing plant in Lyon (France)

¹ www.planetfirst.partners

Imperial College London Member of UK Plastic Pact & HRH Prince Charles's Sustainable Markets Council with the World Economic Forum

PLASTIC POLLUTION – GLOBAL MATERIAL FLOWS

OUR SOLUTION

A world's first biodegradation technology capable of delivering full biological decomposition on PP & PE materials

- Advanced catalytic system¹ able to transform PP & PE materials into a bioavailable wax which naturally occurring microorganisms can easily assimilate
- No microplastics² or toxic substances are left behind postdegradation stage
- Time controlled process to allow optimal use phase and recycling recovery, if recycling option is available
- Tested & certified to international biodegradability standard (BSI PAS 9017)³ underpinned by EN, ASTM and ISO standards (ASTM D5988/ISO 17556)
- Verified through ISO/IEC 17025 accredited independent 3rd party. Lab data cross-checked with real world conditions

¹ Proprietary technology, patent No. WO 2018/095905

² As per the European Chemical Agency's definition (ECHA)

³ BSI PAS 9017: Standard for biodegradability of Polyolefins in the open-air terrestrial environment

PAS 9017:2020

Plastics – Biodegradation of polyolefins in an open-air terrestrial environment – Specification

BSI PAS 9017

- New protocol based on pass/fail criteria enables technology to be proven against independent criteria
- Tested & certified to international biodegradability standard (BSI PAS 9017) underpinned by EN, ASTM and ISO standards (ASTM D5988/ISO 17556)
- Technology challenged against 3 different requirements:
 - Weathering and related chemical analysis to establish polymer transformation into wax
 - Ecotox testing to prove no toxic substances are present in the resulting wax
 - Full biodegradation of wax
- Verification of compliance to PAS9017 standard is released by third party independent lab
- Just over a year after it was published, the new BSI PAS 9017 standard for biodegradable plastic has already been adopted by other countries, with many more at latter stages of adoption

BIOTRANSFORMATION® IN ACTION

Phase 1:

During the use phase the technology is inactive. The packaging behaves the same way as its non-degradable conventional correspondents.

> Typical timeframe: 6-24 months

Phase 2:

If leaked into the open-air land-based environment, the prolonged exposure to various environmental stimuli will trigger a rapid chemical transformation to wax.

> Typical timeframe: 3-5 months

Phase 3:

The wax is biologically converted into carbon dioxide, mineral salts and microbial biomass by naturally occurring microorganisms living on soil.

> Typical timeframe: 12 months

How the Polymateria technology innovates within a standard commodity plastic product

• Total lifespan

- Product Service Life determination under ISO 2578 / ASTM D3045
 - \checkmark Accelerated thermal aging
 - ✓ Measurement of loss of the mechanical properties ASTM D882-12

- Weathering: a chemical transformation to a bioavailable wax:
 - ✓ Plastic is weathered to mimic outdoor exposure if the plastic escapes into the environment, i.e. augmented version ASTM D4329 / ISO 4892-3
 - ✓ Pass/fail stage gates are used in laboratory testing at this point

Parameters	Test method	Pass/Fail criteria	Standard PE film	PLM PE film
Carbonyl Index (CI)	ATR-IR Spectroscopy ¹	> 1	0.19	1.87
Reduction in weight- average molecular weight (Mw)	ASTM D6474	> 90% initial value	0%	98.3%
Number-average molecular weight (Mn)	ASTM D6474	< 5,000 Da	13,767 Da	507 Da

¹ The carbonyl Index (CI) is measured by ATR-IR taking the A(1850-1650)/(1500-1420) as a the basis for measurement.

✓ Criteria met

x

• Environmental safety of bioavailable waxes:

OECD 211 (+ OECD 202)

• Water – Daphnia

- Passing OECD 211 demonstrates:
 - No heavy metals
 - No toxic compounds
 - No leachates of harmful impact to aquatic systems

OECD 208 & OECD 222

- Terrestrial plants (seedling emergence and growth)
- Earthworm reproduction

- Passing OECD 208,& 222 demonstrates:
 - No chronic harmful effects due to longer term exposure in soil.

- Biodegradation on soil under mesophilic conditions:
 - ✓ After weathering, biodegradation on soil launched under ISO 17556 / ASTM D5998

Evidence of Varied Plastic Packaging Biotransforming

How the technology works

FULL BIODEGRADATION WITH NO MICROPLASTICS LEFT BEHIND

CRYSTALLINITY

UNIQUE CHEMICAL TRANSFORMATION TO BIOAVAILABLE WAX Fully biodegrade in the Will not biodegrade in the natural environment leaving natural environment leaving no microplastics behind harmful microplastics behind 8/100 HARD BRITTLE **PLASTICS** WAXES 80 SOFT TOUGH SOFT 60 **PLASTICS** WAXES WAXES **GREASES / LIQUIDS** 40 **Poly** materia CURRENT 20

1,000 3,000 10,000 5,000 50,000 MOLECULAR WEIGHT (Da) Degree of molecular transformation controlled through stringent specifications on achieved molecular size reduction (Mw, Mn, Mz)

 \rightarrow ensure no microplastics are left behind

HOW IT IS DEPLOYED

- Formulated as a drop-in Masterbatch (MB)
- Each MB is tailored to the resin's footprint, application profile and required use life
- Compatible with the normal plastic conversion processes which limits cost
- No impact to product performance or functional benefits
- Allow for recycling to happen through time-controlled process
- Typical loading rate: 2 wt.%

Find out more at www.polymateria.com

Contact: <u>mt@polymateria.com</u>

